Gaussian Process Covariance Kernels for Pattern Discovery and Extrapolation

نویسندگان

  • Andrew Gordon Wilson
  • Ryan P. Adams
چکیده

Gaussian processes are rich distributions over functions, which provide a Bayesian nonparametric approach to smoothing and interpolation. We introduce simple closed form kernels that can be used with Gaussian processes to discover patterns and enable extrapolation. These kernels are derived by modelling a spectral density – the Fourier transform of a kernel – with a Gaussian mixture. The proposed kernels support a broad class of stationary covariances, but Gaussian process inference remains simple and analytic. We demonstrate the proposed kernels by discovering patterns and performing long range extrapolation on synthetic examples, as well as atmospheric CO2 trends and airline passenger data. We also show that we can reconstruct standard covariances within our framework.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Covariance Kernels for Fast Automatic Pattern Discovery and Extrapolation with Gaussian Processes

Truly intelligent systems are capable of pattern discovery and extrapolation without human intervention. Bayesian nonparametric models, which can uniquely represent expressive prior information and detailed inductive biases, provide a distinct opportunity to develop intelligent systems, with applications in essentially any learning and prediction task. Gaussian processes are rich distributions ...

متن کامل

Gaussian Process Kernels for Pattern Discovery and Extrapolation

Gaussian processes are rich distributions over functions, which provide a Bayesian nonparametric approach to smoothing and interpolation. We introduce simple closed form kernels that can be used with Gaussian processes to discover patterns and enable extrapolation. These kernels are derived by modelling a spectral density – the Fourier transform of a kernel – with a Gaussian mixture. The propos...

متن کامل

GPatt: Fast Multidimensional Pattern Extrapolation with Gaussian Processes

Gaussian processes are typically used for smoothing and interpolation on small datasets. We introduce a new Bayesian nonparametric framework – GPatt – enabling automatic pattern extrapolation with Gaussian processes on large multidimensional datasets. GPatt unifies and extends highly expressive kernels and fast exact inference techniques. Without human intervention – no hand crafting of kernel ...

متن کامل

Fast Kernel Learning for Multidimensional Pattern Extrapolation

The ability to automatically discover patterns and perform extrapolation is an essential quality of intelligent systems. Kernel methods, such as Gaussian processes, have great potential for pattern extrapolation, since the kernel flexibly and interpretably controls the generalisation properties of these methods. However, automatically extrapolating large scale multidimensional patterns is in ge...

متن کامل

The Human Kernel

Bayesian nonparametric models, such as Gaussian processes, provide a compelling framework for automatic statistical modelling: these models have a high degree of flexibility, and automatically calibrated complexity. However, automating human expertise remains elusive; for example, Gaussian processes with standard kernels struggle on function extrapolation problems that are trivial for human lea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1302.4245  شماره 

صفحات  -

تاریخ انتشار 2013